Сдвиг фаз в цепи переменного тока

_____, ____ группа

"___" _____ 20___ г.

1 Аннотация

В работе с помощью осциллографа исследуются сдвиги фаз в различных цепях переменного тока. В первой и второй частях работы исследуется зависимость сдвига фаз между напряжением и током от сопротивления в RC- и RL-цепях. В третьей части снимается фазово-частотная характеристика RLC-цепи для двух разных значений R, по ней определяются добротности этих цепей. В последней части исследуется работа фазовращателя.

2 Теоретические сведения

2.1 Вынужденные колебания в RLC-цепи

Рассмотрим процессы, протекающие в контруре, состоящем из последовательно соединенных сопротивления R, ёмкости C, индуктивности L и источника внешней ЭДС, изменяющейся по гармоническому закону $\varepsilon_0 \cos \Omega t$. Дифференциальное уравнение для заряда q на конденсаторе записывается следующим образом:

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = \varepsilon_0 \cos \Omega t$$

Продифферинцируем обе части по времени и учтем, что $I = \frac{dq}{dt}$.

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = -\Omega\varepsilon_0\sin\Omega t$$

Рис. 1: Последовательный контур с внешней ЭДС

Будем искать установившееся решение в виде $I=\hat{I}_0e^{i\Omega t},$ где \hat{I} - комплексная амплитуда тока. Получим уравнение

$$-L\hat{I}_0\Omega^2 + i\hat{I}_0\Omega R + \hat{I}_0\frac{1}{C} = i\Omega\varepsilon_0$$

Из этого уравнения находится соотношение между ε и \hat{I}_0 :

$$Z = \frac{\varepsilon_0}{\hat{I}_0} = R + i(\Omega L - \frac{1}{\Omega C})$$

Эта величина называется импедансом цепочки Z. Действительная часть импеданса называется активным сопротивлением, а мнимая часть - реактивным сопротивлением.

Из выражения для импеданса находится амплитуда тока I_0 и разность фаз ψ между входным напряжением и током в цепи:

$$I_0 = \frac{\varepsilon_0}{\sqrt{R^2 + (\Omega L - 1/\Omega C)^2}}$$
$$\psi = \arctan(\frac{\Omega L - \frac{1}{\Omega C}}{R})$$

Резонанс происходит при частоте, при которой ток в цепи наибольший. Из выражения для амплитуды тока находится резонансная частота

$$\nu_0 = \frac{1}{2\pi\sqrt{LC}}$$

2.2 Добротность

Добротностью Q LRC-цепи называется отношение полной запасенной энергии W_0 к потерям энергии ΔW при изменении фазы на 1 радиан при отсутствии источника ЭДС.

$$W_0 = \frac{LI^2}{2}$$

Средняя мощность энергопотерь равна

$$P_{\text{потерь}} = \frac{I^2 R}{2}$$

Добротность равна

$$Q = \frac{W_0 \Omega_0}{P_{\text{потерь}}} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Добротность можно найти по фазово-частотной характеристике цепи. Разность фаз между напряжением источника и током в цепи равна

$$\begin{split} \psi &= \arctan(\frac{\Omega L - \frac{1}{\Omega C}}{R}) \\ &\pm R = \Omega L - \frac{1}{\Omega C} \\ &\Delta \Omega = \frac{R}{2L} \\ &Q = \frac{\Omega_0}{2\Delta \Omega} \end{split}$$

2.3 Фазовращатель

Один из исследуемых в данной работе объектов - фазовращатель, прибор, позволяющий изменять фазу входного сигнала на угол α в пределах от 0 до ψ . Его схема изображена на рис. 2. Изменение α производится с помощью изменения сопротивления R. Если амплитуда входного напряжения равна U_0 и имеет нулевую фазу, то комплексная амплитуда выходного напряжения $\hat{U}_{\text{вых}}$ находится по формуле

$$\hat{U}_{\text{bbin}} = \frac{U_0}{2} \frac{R\Omega C + i}{R\Omega C - i} = \frac{U_0}{2} e^{2i \arctan 1/(R\Omega C)}$$

Сдвиг фаз тогда равен

$$\alpha = 2\arctan(\frac{1}{R\Omega C})$$

Фазовая диаграмма фазовращателя изображена на рисунке 3.

Рис. 2: Устройство фазовращателя

Рис. 3: Фазовая диаграмма для фазовращателя

2.4 Экспериментальная установка

Рис. 4: Экспериментальная установка для исследования сдвига фаз между током и напряжением

Используемая для измерения сдвига фаз между напряжением и током в RLC-цепи изображена на рис. 4. Пропорциональный току сигнал снимается с сопротивления r, пропорциональный напряжению - с генератора. По смещению двух синусоид друг относительно друга измеряется сдвиг фаз между током и напряжением в цепи.

Рис. 5: Экспериментальная установка для исследования сдвига фаз между выходным и входным сигналами фазовращателя

Для исследования фазовращателя применяется установка, схема которой изображена на рис. 5.

3 Методика измерений

3.1 Исследование RC-цепочки

Будем использовать установку, изображенную на рис. 4 с C = 0.5 мкФ и закороченной катушкой L. Зафиксируем частоту $\nu = 1000$ Гц. Рассчитаем реактивное сопротивление цепи Z. Измерим зависимость сдвига фаз ψ между током и напряжением от сопротивления при диапазоне изменения сопротивленя R от 0 до 10Z.

3.2 Исследование RL-цепочки

Будем использовать установку, изображенную на рис. 4 с L = 49.5 мГн и закороченным конденсатором C. Зафиксируем частоту $\nu = 1000$ Гц. Рассчитаем реактивное сопротивление цепи Z. Измерим зависимость сдвига фаз ψ между током и напряжением от сопротивления при диапазоне изменения сопротивленя R от 0 до 10Z.

3.3 Исследование RLC-цепочки

Будем использовать установку, изображенную на рис. 4. Устанавливаются значения $C = 0.5 \text{ мк}\Phi$, L = 49.5 мГн, R = 0. Измерим частоту резонанса Ω_0 . Измерим зависимость сдвига фаз ψ между током и напряжением от частоты при изменении сдвига фаз от $-\pi/3$ до $\pi/3$. Повторим те же измерения для значения R = 1000м.

3.4 Исследование фазовращателя

Будем использовать установку, изображенную на рис. 5 с C = 0.5мк Φ , $\nu = 51$ к Γ ц. Оценим визуально диапазон изменения сдвига фаз при изменении R от 1 до 10кOM.

4 Результаты измерений

4.1 Исследование RC-цепочки

Параметры установки следующие: ёмкость конденсатора C = 0.5 мк Φ , сопротивление r = 12.4 Ом, частота источника $\nu = 1000$ Гц. Модуль реактивного сопротивления равен

$$\frac{1}{\Omega C} = 318 \text{ Om}$$

Измерим зависимость сдвига фаз от R в диапазоне R от 0 Ом до 3400 Ом. Для этого будем измерять сдвиг x одной синусоиды относительно другой в делениях экрана осцилографа и половину периода одной из синусоид x_0 . Для сопротивлений, при которых x мал, будем измерять x при увеличенном масштабе. Результаты измерений приведены в таблице 1.

R, Om	х, дел	Δx , дел	<i>x</i> 0, дел	ψ , рад	$\Delta \psi$, рад
0	$2,\!40$	0,10	4,9	$1,\!53$	0,09
100	1,90	0,10	4,9	1,21	0,08
200	1,50	0,10	4,9	0,96	0,08
400	1,10	0,10	4,9	0,70	0,07
600	0,74	0,02	4,9	$0,\!47$	0,02
800	0,48	0,02	4,9	0,30	0,02
1200	0,40	0,02	4,9	$0,\!25$	0,02
1800	0,28	0,02	4,9	$0,\!17$	0,02
2400	0,20	0,02	4,9	0,12	0,02
3400	0,18	0,02	4,9	0,11	0,02

Таблица 1: Зависимость сдвига фаз от сопротивления в RC-цепочке.

4.2 Исследование RL-цепочки

Параметры установки следующие: индуктивность катушки L = 49,5 мГн, сопротивление катушки $R_L = 36$ Ом, сопротивление r = 12.4 Ом, частота источника $\nu = 1000$ Гц. Модуль реактивного сопротивления равен

$$\Omega L = 311$$
 Ом

Аналогично предыдущему пункту, измерим зависимость сдвига фаз от R в диапазоне R от 0 Ом до 3400 Ом. Результаты измерений приведены в таблице 2.

4.3 Исследование RLC-цепочки

Параметры установки следующие: ёмкость конденсатора C = 0.5 мк Φ , индуктивность катушки L = 49,5 мГн, сопротивление катушки $R_L = 36$ Ом, сопротивление r = 12.4 Ом, сопротивление R = 0 Ом.

Рассчетная частота резонанса равна

$$u_{0\mathrm{p}} = rac{1}{2\pi\sqrt{LC}} = 1011$$
 Гц

Частота резонанса, полученная из эксперимента(частота, при которой сдвиг фаз равен 0)

$$u_{0\flat} = 1010 \pm 10$$
 Гц

R, Om	х, дел	Δx , дел	<i>x</i> 0, дел	ψ , рад	$\Delta \psi$, рад
0	2,20	$0,\!10$	4,9	1,41	0,09
100	1,70	0,10	4,9	1,09	0,09
200	1,40	0,10	4,9	0,90	0,08
400	0,94	0,02	4,9	0,60	0,02
600	0,70	0,02	4,9	0,45	0,02
800	0,56	0,02	4,9	0,36	0,02
1200	0,40	0,02	4,9	0,26	0,02
1800	0,28	0,02	4,9	0,18	0,02
2400	0,22	0,02	4,9	0,14	0,02
3400	0,18	0,02	4,9	0,12	0,02

Таблица 2: Зависимость сдвига фаз от сопротивления в RL-цепочке.

Видим, что измеренная частота резонанса и частота резонанса, рассчитанная из параметров установки очень близки.

Снимем зависимость сдвига фаз ψ от частоты. При этом будем учитывать знак ψ : при $\Omega < \Omega_0 \ \psi < 0$ (ток обгоняет напряжение), при $\Omega > \Omega_0 \ \psi > 0$ (напряжение обгоняет ток).

Результаты измерений приведены в таблице 3. Результаты аналогичных измерений для R=100 Ом приведены в таблице 4.

Таблица 3: Зависимость сдвига фаз от частоты в RLC-цепочке для R=0 Ом.

ν, Γц	х, дел	<i>x</i> ₀ , дел	ψ/π	$\Delta(\psi/\pi)$
870	-2,00	5,70	-0,35	$0,\!02$
900	-1,70	$5,\!50$	-0,31	0,02
930	-1,40	$5,\!30$	-0,26	0,02
960	-1,00	$5,\!20$	-0,19	0,02
990	-0,45	$5,\!00$	-0,09	0,02
1010	0,00	4,90	0,00	0,20
1040	0,60	4,70	0,13	0,02
1070	0,90	4,60	0,20	$0,\!03$
1100	1,20	$4,\!50$	0,27	$0,\!03$
1130	1,30	4,30	0,30	0,03
1160	1,40	4,20	0,33	0,03

4.4 Исследование фазовращателя

При уменьшении переменного сопротивления до нуля сдвиг фаз, даваемы фазовращателем, стремится к π . При увеличении сопротивления до 10 кОм сдвиг фаз почти доходит до 0. Сдвиг фаз равен $\frac{\pi}{2}$ при сопротивлении $R = 350 \pm 10$ Ом.

ν, Гц	х, дел	<i>x</i> ₀ , дел	ψ/π	$\Delta(\psi/\pi)$
1010	0,00	$4,\!90$	0,00	0,02
1580	2,20	6,30	0,35	0,02
1480	2,10	6,70	0,31	0,02
1380	2,10	7,20	0,29	0,02
1280	1,90	7,70	0,25	0,02
1180	1,60	8,40	0,19	0,01
1130	1,20	8,80	0,14	0,01
1080	0,90	9,20	0,10	0,01
1040	0,20	4,80	0,04	0,02
580	-3,20	8,50	-0,38	0,02
680	-2,40	7,30	-0,33	0,02
780	-1,70	6,40	-0,27	0,02
880	-1,00	5,70	-0,18	0,02
930	-0,60	$5,\!40$	-0,11	0,02
970	-0,30	5,20	-0,06	0,02

Таблица 4: Зависимость сдвига фаз от частоты в RLC-цепочке для R=100 Ом.

5 Обработка результатов

5.1 RC-цепочка

Для RC-цепочки модуль разности фаз между током и напряжением ψ задается формулой

$$\tan \psi = \frac{1}{\Omega C R_{\Sigma}}$$

Для экспериментальной проверки этой зависимости построим график в координатах $(\frac{1}{\Omega CR_{\Sigma}}, \tan \psi)$ вместе с теоретическим. Данные для графика приведены в таблице 5.

	$M \subset R\Sigma$		
R, Om	$ an\psi$	$\Delta \tan \psi$	$1/(\Omega CR_{\Sigma})$
100	2,72	0,79	2,83
200	1,43	0,26	1,50
400	0,85	0,14	0,77
600	0,51	$0,\!03$	$0,\!52$
800	0,32	0,02	0,39
1200	0,26	0,02	0,26
1800	0,18	0,02	0,18
2400	0,13	0,02	0,13
3400	0,12	0,02	0,09

Таблица 5: Зависимость $\tan \psi$ от $\frac{1}{\Omega CR_{\Sigma}}$ для RC-цепочке.

Видим, что точки хорошо ложатся на теоретическую прямую.

5.2 RL-цепочка

Для RL-цепочки модуль разности фаз между током и напряжением ψ задается формулой

$$\tan\psi = \frac{\Omega L}{R_{\Sigma}}$$

Аналогично предыдущему пункту, для проверки этой зависимости построим график в координатах $(\frac{\Omega L}{R_{\Sigma}}, \tan \psi)$. Данные для графика приведены в таблице 6.

		$r = R_{\Sigma}$	r 1 ²
R, Om	$\tan\psi$	$\Delta \tan \psi$	$\frac{\Omega L}{R_{\Sigma}}$
100	1,92	0,41	2,10
200	1,25	$0,\!21$	1,25
400	0,69	0,04	0,69
600	0,48	0,03	0,48
800	0,38	0,02	0,37
1200	0,26	0,02	0,25
1800	0,18	0,02	0,17
2400	0,14	0,02	0,13
3400	0,12	0,02	0,09

Таблица 6: Зависимость $\tan \psi$ от $\frac{\Omega L}{P_{-}}$ для RL-цепочке.

Видим, что данные снова хорошо легли на теоретическую прямую.

5.3 Исследование RLC-цепочки

Для R=0 Ом и R=100 Ом построим на одном графике зависимость $|\psi|/\pi$ от ν/ν_0 .

Зависимость $|\psi|/\pi$ от ν/ν_0 для RLC-цепочки

Обозначим за $2\Delta\nu$ ширину графика пр
и $|\psi|=\pi/4.$

$$2\Delta\nu_{R=0} = (0.18 \pm 0.06)\nu_0$$

$$2\Delta\nu_{R=100} = (0.56 \pm 0.15)\nu_0$$

Добротность рассчитывается по формуле

$$Q = \frac{\nu_0}{2\Delta\nu}$$
$$Q_{\mathfrak{s},R=0} = 6 \pm 2$$
$$Q_{\mathfrak{s},R=100} = 1.8 \pm 0.5$$

Рассчитаем добротность из параметров схемы.

$$Q_{p,R=0} = 5.9$$

 $Q_{p,R=100} = 2.1$

Видно, что рассчетная добротность совпадает с измеренной в пределах погрешности.

6 Вывод

Таким образом, во всех частях работы экспериментальные зависимости совпадают с теоретическими.