Вынужденные колебания в параллельном контуре

1 Аннотация

В работе проводится исследование параллельного колебательного контура. По измерениям амплитуд колебаний в установившемся режиме и режимах нарастания и затухания находится логарифмический коэффициент затухания, добротность контура, а также сопротивление катушки индуктивности.

2 Теоретические сведения

2.1 Вынужденные колебания

В работе исследуется колебательный контур, изображенный на рис. 1. Контур состоит из параллельно соединенных катушки индуктивности L и магазина ёмкостей C_n . Последовательно с катушкой соединен резистор R. R_L - активное сопротивление катушки.

Обозначим полный ток в цепочке за \vec{I} , напряжение на цепочке за \vec{U} . Будем считать фазу \vec{I} равной 0.

Найдем импеданс цепи. Импеданс последовательно соединенных катушки L и резистора R равен

$$Z_L = i\omega L + R_L + R \tag{1}$$

Импеданс конденсатора равен

$$Z_C = -\frac{i}{\omega C} \tag{2}$$

Обозначим суммарное активное сопротивление за $R_{\Sigma}=R_L+R.$

Импеданс цепи равен

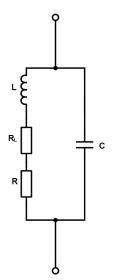


Рис. 1: Параллельный колебательный контур

$$Z = \frac{Z_L Z_C}{Z_L + Z_C} = Q \rho \frac{1 - i \frac{\omega_0}{\omega} \frac{R + R_L}{\rho}}{1 + i Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$
(3)

Здесь были использованы обозначения: $\omega_0 = 1/\sqrt{LC}$ - собственная частота, при котором импеданс котура чисто действителен при его последовательном обходе, $\rho = \sqrt{L/C}$ - реактивное сопротивление, Q - добротность контура, равная

$$Q = \frac{1}{R_{\Sigma}} \sqrt{\frac{L}{C}} = \frac{\rho}{R_{\Sigma}} \tag{4}$$

В используемой установке $Q \gg 1$, из чего следует, что импеданс по модулю минимален на собственной частоте контура ω_0 . Поэтому собственную частоту для цепей с высокой добротностью также называют резонансной частотой.

Рассчитаем векторы тока в катушке и конденсаторе, а также вектор напряжения на контуре.

$$\vec{I}_C = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i\frac{\omega_0}{\omega} \frac{R + R_L}{\rho}}{1 + iQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$
(5)

$$\vec{I}_L = -iQI_0 \frac{\omega_0}{\omega} \frac{1}{1 + iQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$
 (6)

$$\vec{U} = I_0 Z = Q \rho I_0 \frac{1 - i \frac{\omega_0}{\omega} \frac{R + R_L}{\rho}}{1 + i Q \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$
(7)

Для исследуемых контуров и исследуемый диапазонов частот верны неравенства

$$|\omega - \omega_0| = |\Delta\omega| \ll \omega_0 \tag{8}$$

$$R_L + R \ll \rho \tag{9}$$

Используя малость этих параметров, можно выражения 5-7 упростить до следующего вида:

$$\vec{I}_C = QI_0 \frac{\omega}{\omega_0} \frac{e^{i\varphi_C}}{\sqrt{1 + (\tau\Delta\omega)^2}} \tag{10}$$

$$\varphi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho} - \arctan(\tau \Delta \omega) \tag{11}$$

$$\vec{I}_L = QI_0 \frac{\omega_0}{\omega} \frac{e^{i\varphi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}$$
(12)

$$\varphi_L = -\frac{\pi}{2} - \arctan(\tau \Delta \omega) \tag{13}$$

$$\vec{U} = Q\rho I_0 \frac{e^{i\varphi_U}}{\sqrt{1 + (\tau\Delta\omega)^2}} \tag{14}$$

$$\varphi_U = -\frac{\omega_0}{\omega} \frac{R + R_L}{\rho} - \arctan(\tau \Delta \omega) \tag{15}$$

Здесь $\tau = 2L/R_{\Sigma} = 2Q/\omega_0$ - время затухания контура.

Из этой формулы видно, что при постоянном токе модуль напряжения обратно пропорционален $\sqrt{1+(\tau\Delta\omega)^2}$. Поэтому ширина АЧХ на высоте $U_{max}/\sqrt{2}$ равна

$$\Delta\omega = \frac{\omega_0}{Q}$$

2.2 Нарастающие и затухающие колебания

Токи и напряжения в контуре описываются неоднородным линейным дифференциальным уравнением. Его решение равно сумме общего решения однородного уравнения (вынуждающий ток равен 0) и частного решения неоднородного. Частное решение при вынуждающем токе, равном

$$I_{\rm BH}(t) = I_0 \cos(\omega t)$$

записывается в виде, определяемом формулой 14:

$$U = U_0(I)\sin(\omega t + \varphi(\omega))$$

Найдем общее решение однородного уравнения. В этом случае внешний ток равен нулю, и можно рассматривать замкнутый RLC-контур.

$$L\frac{d^2I_L}{dt^2} + R_{\Sigma}\frac{dI_L}{dt} + \frac{I_L}{C} = 0$$

В рассматриваемой установке $Q\gg 0$, следовательно, $I_L(t)$ - затухающие колебания.

$$I_L(t) = I_{L0}e^{-\gamma t}\sin(\sqrt{\omega_0^2 - \gamma^2}t + \varphi_0)$$

Здесь используется обозначение $\gamma = \frac{R}{2L}$. Так как $\omega_0 \gg \gamma$, за период затухания колебаний много больше периода колебаний, и можно записать зависимость амплитуды колебаний от времени:

$$I_{Lmax}(t) = I_{L0}e^{-\gamma t}$$

$$U_{\text{одн}}(t) = U_0 e^{-\gamma t} \sin(\omega t + \varphi_0)$$

Рассмотрим теперь случаи нарастающих колебаний. Для нарастающих колебаний выполняются начальные условия $U(0)=0,\ \dot{U}(0)=0.$ Зависимость напряжения от времени записывается в виде

$$U(t) = U_0(\cos(\omega_0 t + \varphi_U) - \cos(\omega t + \varphi_U)e^{-\gamma t})$$

При $|\omega_0 - \omega| \ll \omega_0$

$$U(t) = U_0 \cos(\omega_0 t + \varphi_U)(1 - e^{-\gamma t})$$

Зависимость амплитуды k-го максимума от его номера следующая:

$$U_k = U_0(1 - e^{-\gamma Tk})$$

Для затухающих колебаний вынуждающее напряжение равно 0, и зависимость U(t) записывается в виде

$$U(t) = U_0 e^{-\gamma t} \sin(\omega_0 t + \varphi_0)$$

Зависимость амплитуды k-го максимума от его номера:

$$U_k = U_0 e^{-\gamma Tk}$$

Величину $\Theta = \gamma T$ назывеют логарифмическим декрементом затухания. Добротность выражается через него следующим образом:

$$Q = \frac{\omega_0}{2\gamma} = \frac{\pi}{\Theta}$$

3 Экспериментальная установка

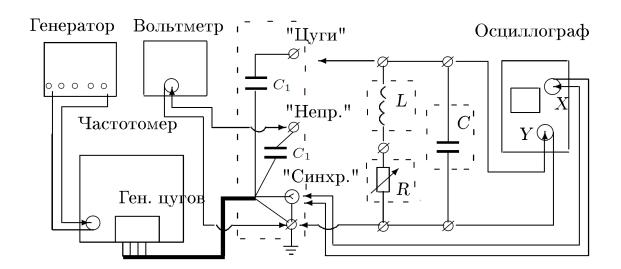


Рис. 2: Схема установки

В работе используется установка, изображенная на рисунке 2. Для исследования АЧХ контура он подключается к выводам "Непр."и "Земля". Параллельно с измерением амплитуды напряжения U на всем контуре измеряется амплитуда напряжения U_1 на последовательно соединенным с ним конденсатором C_1 . Это позволяет находить амплитуду вынуждающего тока по формуле

$$I_0 = U_0 \omega C_1$$

Для измерения логарифмического декремента затухания по затуханию и нарастанию колебаний установка подключается к выводам "Цуги"и "Земля". Вывод X осциллографа подключается к выводу "Синхр."и используется для синхронизации.

Параметры установки:

$$L=100$$
 м Γ н

$$C=100\pm 3$$
 н Φ

$$C_1=600$$
 пк Φ

4 Методика и результаты измерений и их обработки

4.1 Измерение АЧХ

Рассчитаем резонансную частоту схемы.

$$f_0 = rac{1}{2\pi\sqrt{LC}} = 1,59 \pm 0,02$$
 к Γ ц

Для схем с сопротивлениями магазина $R_1=0$ Ом и $R_2=100$ Ом измерим зависимость U и U_1 от частоты f. Для каждой частоты рассчитаем амплитуду внешнего тока $I_0=U_1\omega C_1$, амплитуду тока в конденсаторе $I_C=U\omega C$ импеданс цепи $Z=U/I_0$ и отношение импеданса к максимальному Z/Z_{max} . Результаты приведены в таблицах 1 и 2.

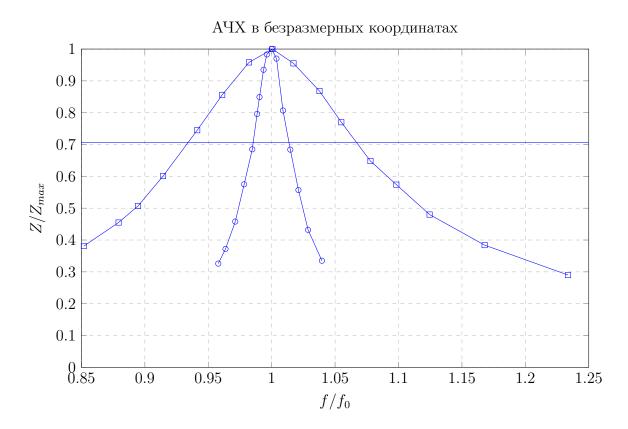

f , Γ ц	f/f_0 , Гц	U, B	U_1 , B	ΔU , B	I_C , мА	I_0 , MKA	Z, кОм	Z/Z_{max}	$\Delta Z/Z_{max}$
1,500	0.9579	0.44	6.86	0.01	0.41	38.8	11.3	0.326	0.007
1,509	0.9636	0.51	6.92	0.01	0.48	39.4	13.0	0.372	0.007
1,521	0.9713	0.64	7.01	0.01	0.61	40.2	15.9	0.458	0.007
1,532	0.9783	0.82	7.10	0.01	0.79	41.0	20.0	0.575	0.007
1,542	0.9847	0.99	7.14	0.03	0.96	41.5	23.9	0.685	0.021
1,548	0.9885	1.14	7.05	0.03	1.11	41.1	27.7	0.796	0.021
1,551	0.9904	1.20	6.95	0.03	1.17	40.6	29.5	0.849	0.021
1,556	0.9936	1.29	6.76	0.03	1.26	39.7	32.5	0.935	0.022
1,560	0.9962	1.29	6.41	0.03	1.26	37.7	34.2	0.983	0.023
1,566	1.0000	1.26	6.13	0.03	1.24	36.2	34.8	1.000	0.024
1,572	1.0038	1.14	5.70	0.03	1.13	33.8	33.7	0.970	0.026
1,580	1.0089	0.96	5.74	0.03	0.95	34.2	28.1	0.807	0.025
1,589	1.0147	0.82	5.75	0.01	0.82	34.4	23.8	0.684	0.008
1,599	1.0211	0.68	5.82	0.01	0.68	35.1	19.4	0.557	0.008
1,611	1.0287	0.54	5.91	0.01	0.55	35.9	15.0	0.432	0.008
1,628	1.0396	0.43	6.01	0.01	0.44	36.9	11.7	0.335	0.008

Таблица 1: Результаты измерения и обработки АЧХ для $R=0~{
m Om}$

Построим на одном графике зависимости $DeltaZ/Z_{max}(f/f_0)$ для двух значений сопротивления.

f, Гц	f/f_0 , Гц	U, B	U_1 , B	ΔU , B	I_C , мА	I_0 , мк A	Z, кОм	Z/Z_{max}	$\Delta Z/Z_{max}$
1,334	0.8519	0.090	6.51	0.003	0.08	32.74	2.75	0.381	0.013
1,377	0.8793	0.111	6.52	0.003	0.10	33.85	3.28	0.455	0.012
1,401	0.8946	0.126	6.53	0.003	0.11	34.49	3.65	0.507	0.012
1,432	0.9144	0.153	6.54	0.003	0.14	35.31	4.33	0.601	0.012
1,474	0.9413	0.195	6.53	0.003	0.18	36.29	5.37	0.745	0.011
1,505	0.9610	0.228	6.51	0.003	0.22	36.94	6.17	0.856	0.011
1,538	0.9821	0.258	6.44	0.003	0.25	37.34	6.91	0.958	0.011
1,567	1.0006	0.270	6.34	0.003	0.27	37.45	7.21	1.000	0.011
1,593	1.0172	0.261	6.31	0.003	0.26	37.89	6.89	0.955	0.011
1,625	1.0377	0.240	6.26	0.003	0.25	38.35	6.26	0.868	0.011
1,652	1.0549	0.216	6.25	0.003	0.22	38.92	5.55	0.770	0.011
1,688	1.0779	0.186	6.26	0.003	0.20	39.84	4.67	0.648	0.010
1,720	1.0983	0.168	6.26	0.003	0.18	40.59	4.14	0.574	0.010
1,761	1.1245	0.144	6.27	0.003	0.16	41.63	3.46	0.480	0.010
1,829	1.1679	0.120	6.29	0.003	0.14	43.37	2.77	0.384	0.010
1,932	1.2337	0.096	6.31	0.003	0.12	45.96	2.09	0.290	0.009

Таблица 2: Результаты измерения и обработки АЧХ для $R=100~{
m Om}$

Из АЧХ находим

$$(\Delta f/f_0)_{R=0} = 0.028 \pm 0.003$$

 $(\Delta f/f_0)_{R=100} = 0.133 \pm 0.005$
 $Q_{R=0} = 35 \pm 4$
 $Q_{R=100} = 7.5 \pm 0.3$
 $R_L = 100 \cdot \frac{0.028}{0.133 - 0.028} = (27 \pm 5)$ Ом

4.2 Исследование затухания и нарастания колебаний

Для исследования нарастания и затухания колебаний подадим на контур цуги колебаний резонансной частоты.

При сопротивлении R=0 Ом колебания нарастают слишком медленно, и не успевают достичь максимального напряжения. Поэтому затухание и нарастание колебаний исследуем для цепей с сопротивлениями R=20 Ом и R=100 Ом.

Осцилограммы напряжения на конденсаторе приведены на рисунках 3 и 4.

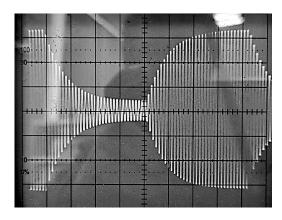


Рис. 3: $U_C(t)$ для цепи с $R=20~{
m Om}$

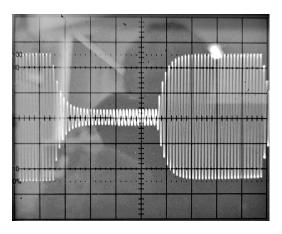


Рис. 4: $U_C(t)$ для цепи с R = 100 Ом

Видно, что амплитуда колебаний спадает не до нуля, а до какого-то минимального значения. Скорее всего, это вызвано несовершенностью волновых цугов. Будем измерять минимальное значение амплитуды и производить рассчеты по разности максимального и минимального значения.

Для каждой осциллограммы измерим U_{max} и U_{min} в пикселях.

Для $R=20~\mathrm{Om}$

$$U_{max1} = 656$$

$$U_{min1} = 76$$

Для R = 100 Ом

$$U_{max2} = 608$$

$$U_{min2} = 78$$

При нарастании и затухании колебаний для нескольких пар максимумов измерим U_1 , U_2 и Δn - две амплитуды и число колебаний между ними. Все измерения проводятся в условных единицах (пикселях на фотографии). Результаты измерений приведены в таблицах.

Таким образом, измеренные логарифмические коэффициенты затухания и добротности равны

$$\Theta_{\text{нараст.},R=20 \text{ OM}} = (154 \pm 7) \cdot 10^{-3}$$

$$\Theta_{\text{затух.},R=20 \text{ OM}} = (162 \pm 5) \cdot 10^{-3}$$

$$\Theta_{\text{нараст.},R=100 \text{ OM}} = (426 \pm 18) \cdot 10^{-3}$$

$$\Theta_{\text{затух.},R=100 \text{ OM}} = (446 \pm 14) \cdot 10^{-3}$$

$$Q_{\text{нараст.},R=20 \text{ OM}} = 20.4 \pm 0.9$$

$$Q_{\text{затух.},R=20 \text{ OM}} = 19.3 \pm 0.6$$

$$Q_{\text{нараст.},R=100 \text{ OM}} = 7.4 \pm 0.3$$

U_1	U_2	Δn	$\Theta = \ln((U_{max} - U_1)/(U_{max} - U_2))/n$				
131	271	2	0.155				
271	374	2	0.156				
374	452	2	0.162				
452	526	3	0.150				
526	575	3	0.158				
575	610	4	0.141				
Среднее			0.154				
Среднеквадратичная погр.			0.003				
Коэфф. Стьюдента			2.570				
Случ	чайна	я погр.	0.007				

Таблица 3: Результаты измерения Θ по нарастанию для $R=20~\mathrm{Om}$

U_1	U_2	Δn	$\Theta = \ln((U_1 - U_{min})/(U_2 - U_{min}))/n$		
611	462	2	0.163		
462	356	2	0.161		
356	279	2	0.161		
279	200	3	0.164		
200	139	4	0.169		
139	105	5	0.155		
Среднее			0.162		
Среднеквадратичная погр.			0.002		
Коэфф. Стьюдента			2.570		
Случайная погр.			0.005		

Таблица 4: Результаты измерения Θ по затуханию для $R=20~\mathrm{Om}$

U_1	U_2	Δn	$\Theta = \ln((U_{max} - U_1)/(U_{max} - U_2))/n$			
205	344	1	0.423			
344	435	1	0.423			
435	494	1	0.417			
494	561	2	0.443			
Сред	цнее		0.426			
Среднеквадратичная погр.			0.006			
Коэс	фф. С	тьюдента	3.180			
Случ	чайна	я погр.	0.018			

Таблица 5: Результаты измерения Θ по нарастанию для $R=100~\mathrm{Om}$

U_1	U_2	Δn	$\Theta = \ln((U_1 - U_{min})/(U_2 - U_{min}))/n$			
496	346	1	0.444			
346	250	1	0.443			
250	189	1	0.438			
189	106	3	0.459			
Сред	цнее		0.446			
Сред	цнеква	адратичная погр.	0.005			
Коэс	фф. С	тьюдента	3.180			
Случ	тайна	я погр.	0.014			

Таблица 6: Результаты измерения Θ по затуханию для $R=100~{\rm Om}$

$$Q_{\text{затух.},R=100 \text{ OM}} = 7.0 \pm 0.2$$

Из величин Θ рассчитаем R_L :

$$R_{L, \text{3aTyx.}} = 80 \cdot \frac{\Theta_{\text{3aTyx.}, R=20 \text{ Om}}}{\Theta_{\text{3aTyx.}, R=100 \text{ Om}} - \Theta_{\text{3aTyx.}, R=20 \text{ Om}}} - 20 = 25 \pm 3 \text{ Om}$$

$$R_{L,\text{нараст.}} = 80 \cdot \frac{\Theta_{\text{нараст.},R=20~\text{Ом}}}{\Theta_{\text{нараст.},R=100~\text{Ом}} - \Theta_{\text{нараст.},R=20~\text{Ом}}} - 20 = 25 \pm 3~\text{Ом}$$

Из нарастания и затухания колебаний получились очень близкие значения добротностей цепей и сопротивления катушки.

4.3 Рассчет добротности по параметрам цепи

Измерим с помощью RLC-метра сопротивление катушки в зависимости от частоты. Получаются результаты:

$$R_{L,f=50\Gamma_{\Pi}}=21.54\pm0.01~{
m Om}$$
 $R_{L,f=500\Gamma_{\Pi}}=21.76\pm0.01~{
m Om}$ $R_{L,f=1000\Gamma_{\Pi}}=22.24\pm0.01~{
m Om}$ $R_{L,f=1500\Gamma_{\Pi}}=22.97\pm0.01~{
m Om}$

Наблюдается небольшое увеличение сопротивления при повышении частоты, вызванное уменьшением толщины скин-слоя.

Будем для рассчета использовать значение сопротивления, наиболее близкое к резонансной частоте.

$$Q_{R=0~{
m Om}} = 43.5 \pm 0.9$$

 $Q_{R=20~{
m Om}} = 23.3 \pm 0.5$
 $Q_{R=100~{
m Om}} = 8.13 \pm 0.16$

5 Вывод

Подытожим все результаты измерений добротности в таблице:

R, Om	R_{Σ} , Om	По АЧХ	По нарастанию	По затуханию	f(LCR)
0	22.97	35 ± 4	-	-	43.5 ± 0.9
20	42.97	-	20.4 ± 0.9	19.3 ± 0.6	23.3 ± 0.5
100	122.97	7.5 ± 0.3	7.4 ± 0.3	7.0 ± 0.2	8.13 ± 0.16

Таблица 7: Результаты измерения добротности

Видно, что результаты нахождения добротности разными методами согласуются между собой.