Интерференция лазерного излучения

_____, ___ группа

"___" _____ 20___ г.

1 Аннотация

В работе проводится исследование интерференции излучения гелий-неонового лазера при помощи интерферометра Майкельсона. Для этого снимаются зависимости видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации.

2 Теоретические сведения

В работе используется установка, изображенная на рисунке 1.

Рис. 1: Схема установки

Изначально линейная поляризация лазерное излучение при помощи параллелепипеда Френеля превращается в практически круговую. Далее луч разбивается на два луча при помощи полупрозрачного зеркала. Эти лучи проходят через плечи разной длины, содержащие поляризаторы. После этого два линейно поляризованных луча совмещаются и наблюдается интерференционная картина на экране. Длина вертикального плеча периодически меняется при помощи пьезокерамики ПК. Зависимость интенсивности итогового излучения от времени измеряется при помощи осциллографа, подключенного к фотодиоду Ф. По осциллограмме измеряется видность интерференционной картины. Если h_3 - минимальная интенсивность, h_4 - максимальная, то видность равна

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3}$$

также измеряются интенсивности лучей в двул плечах интерферометра по отдельности. В видность вносят вклад три основных физичиских эффекта: видность одной моды излучения при различных интенсивностях света в отдельных плечах интерферометра γ_1 , видность из-за широты спектра излучения γ_2 и видность из-за различной поляризации суммируемых волн γ_3 . При этом наблюдаемая видность равна их произведению:

$$\gamma = \gamma_1 \gamma_2 \gamma_3$$

Пусть h_1 - интенсивность излучения в горизонтальном плече, h_2 - интенсивность излучения в вертикальном плече. Интенсивность в максимуме равна $(\sqrt{h_1} + \sqrt{h_2})^2$, в минимуме - $(\sqrt{h_1} - \sqrt{h_2})^2$. Тогда при монохроматическом излучении одной поляризации видность равна

$$\gamma_1 = \frac{2\sqrt{h_1h_2}}{h_1 + h_2}$$

Видность γ_2 связана с наличием нескольких мод лазерного излучения и зависит от разности хода лучей *l*. Максимумы γ_2 наблюдаются в том случае, когда наблюдается интерференционный максимум для всех мод. Тогда

$$l = 2Ln$$

Здесь L - длина лазера, n - целое число.

Вблизи максимума форму кривой $\gamma_2(l)$ можно оценить, считая спектр непрерывным гауссовой формы с шириной $2\Delta F$. Получается результат

$$\gamma_2 = e^{-(\pi \Delta F l/c)^2}$$

Зависимость является гауссовой. Полуширина пика видности на уровне 1/2 равна

$$l_{1/2} = \frac{0.26c}{\Delta F}$$

Видность γ_3 равна

$$\gamma_3 = |\cos \alpha|$$

Здесь α - угол между плоскостями поляризации двух суммируемых лучей.

3 Результаты измерений и их обработка

Измерим зависимость h_1 , h_2 , h_3 и h_4 от угла α поворота поляризатора. Для каждого угла рассчитаем видность γ . γ_1 рассчитывается по теоретической формуле. $\gamma_2\gamma_3 = \frac{\gamma}{\gamma_1}$. γ_2 от угла не зависит. Полученный результат отнормируем так, чтобы в максимуме видность достигала единицы. Результаты измерений и вычислений приведены в таблице.

Построим график полученной зависимости вместе с теоретической кривой.

α, \circ	h_1	h_2	h_3	h_4	γ	γ_3	$ \cos \alpha $
0	0.60	3.0	1.2	6.1	0.67	0.98	1.00
10	0.60	3.2	1.4	6.4	0.64	0.96	0.98
20	0.60	3.6	1.9	6.7	0.56	0.87	0.94
30	0.60	3.0	1.4	5.3	0.58	0.85	0.87
40	0.60	2.6	1.6	5.0	0.52	0.72	0.77
50	0.60	1.7	1.2	3.5	0.49	0.61	0.64
60	0.60	1.2	1.2	2.6	0.37	0.42	0.50
70	0.60	0.6	1.0	1.6	0.23	0.25	0.34
80	0.60	0.4	0.8	1.2	0.20	0.22	0.17
90	0.60	0.4	1.0	1.2	0.09	0.10	0.00
100	0.60	0.6	1.0	1.7	0.26	0.28	0.17
105	0.60	1.0	1.6	2.2	0.16	0.18	0.26
110	0.60	1.7	1.8	3.0	0.25	0.31	0.34
120	0.60	2.0	1.9	3.5	0.30	0.38	0.50
130	0.60	2.3	1.8	4.2	0.40	0.54	0.64
140	0.60	3.0	1.9	5.2	0.46	0.68	0.77
150	0.60	3.8	2.3	7.8	0.54	0.86	0.87
160	0.60	2.6	1.2	5.4	0.64	0.89	0.94
170	0.60	2.7	1.0	5.6	0.70	0.98	0.98

Таблица 1: Зависимость видности
 γ_3 от угла α

Зависимость γ_3 от $\cos(\alpha)$

Из графика видно, что экспериментальная зависимость близка к теоретической. Теперь измерим зависимость видности от разности хода между лучами *l*. Также, как и в предыдущей части, рассчитаем видность γ_2 . Результаты измерений приведены в таблице.

Построим график этой зависимости и из него определим расстояние между максимумами и ширину максимума.

<i>l</i> , см	h_1	h_2	h_3	h_4	γ	γ_2
11	0.5	2.0	1.6	4.0	0.43	0.60
13	0.6	2.0	0.9	4.4	0.66	0.86
15	1.0	2.0	0.5	5.2	0.82	0.97
17	0.8	2.0	0.8	4.6	0.70	0.86
19	0.7	2.0	1.2	4.0	0.54	0.68
21	0.6	2.0	1.7	3.5	0.35	0.45
23	0.8	2.0	2.0	3.4	0.26	0.32
25	0.4	2.0	2.8	3.6	0.13	0.18
35	1.5	2.0	3.0	4.0	0.14	0.16
45	0.8	2.0	2.6	3.0	0.07	0.09
55	1.6	2.0	3.4	4.3	0.12	0.13
63	1.4	2.0	3.2	4.4	0.16	0.18
65	1.2	2.0	2.4	4.5	0.30	0.35
67	1.0	2.0	2.0	5.0	0.43	0.50
69	1.0	2.0	1.6	5.2	0.53	0.62
71	0.9	2.0	1.2	5.4	0.64	0.76
73	0.5	2.0	1.4	5.5	0.59	0.82
75	0.8	2.0	0.8	5.7	0.75	0.92
77	0.9	2.0	0.6	6.2	0.82	0.98
79	0.8	2.0	0.8	5.6	0.75	0.92
81	0.3	2.0	1.5	4.0	0.45	0.74
85	0.4	2.0	2.0	3.8	0.31	0.46
87	0.2	2.0	2.2	3.0	0.15	0.29

Таблица 2: Зависимость видности γ_2 от разности хода луче
йl

Из графика расстояние между максимумами, равное удвоенной длине лазера, равно

$$2L = (62 \pm 2)$$
 см

Длина резонатора равна

$$L = (31.0 \pm 1.0)$$
 см

Межмодовое расстояние равно

$$\Delta \nu = \frac{c}{2L} = (0.483 \pm 0.016) \ \Gamma \Gamma \Pi$$

Ширина пика на половине высоты равна

$$2l_{1/2} = (17 \pm 2)$$
 см

Диапазон частот, в котором происходит генерация продольных мод, равен

$$\Delta F = \frac{0.52c}{2l_{1/2}} = (0.92 \pm 0.11) \ \Gamma \Gamma \eta$$

Число генерируемых мод оценивается как

$$N = 1 + 2\frac{\Delta F}{\Delta \nu} = 4.8 \pm 0.6$$

4 Вывод

Мы экспериментально проверили зависимость $\gamma_3 = |\cos \alpha|$. Также мы по зависимости $\gamma_2(l)$ определили длину лазерного резонатора $L = (31.0 \pm 1.0)$ см, межмодовое расстояние $\Delta \nu = (0.483 \pm 0.016)$ ГГц, диапазон частот, в котором происходит генерация продольных волн $\Delta F = (0.92 \pm 0.11)$ ГГц и число генерируемых мод $N = 4.8 \pm 0.6$.